FX Exposure

1. Measuring Exposure

FX Exposure

• Exposure (Risk)

- At the firm level, currency risk is called *exposure*.

• Three areas

(1) *Transaction exposure*: Risk of transactions denominated in FC with a payment date or maturity.

(2) *Economic exposure*: Degree to which a firm's expected cash flows are affected by unexpected changes in S_t .

(3) *Translation exposure*: Accounting-based changes in a firm's consolidated statements that result from a change in S_t . Translation rules create accounting gains/losses due to changes in S_t .

We say a firm is "exposed" or has exposure if it faces currency risk.

Example: Exposure.

A. Transaction exposure.

Swiss Cruises, a Swiss firm, sells cruise packages priced in USD to a broker. Payment in 30 days.

B. Economic exposure.

Swiss Cruises has 50% of its revenue denominated in USD and only 20% of its cost denominated in USD. A depreciation of the USD will affect future CHF cash flows.

C. Translation exposure.

Swiss Cruises obtains a USD loan from a U.S. bank. This liability has to be translated into CHF following Swiss accounting rules. ¶

Q: How can FX changes affect the firm?

- Transaction Exposure

- Short-term CFs: Existing contract obligations.

- Economic Exposure

- Future CFs: Erosion of competitive position.

- Translation Exposure

- Revaluation of balance sheet (Book Value vs Market Value).

Measuring Transaction Exposure

• Transaction exposure (TE) is easy to identify and measure.

- Identification: Transactions denominated in FC with a fixed future date
- Measure: Translate identified FC transactions to DC using St.

 $TE_{j,t}$ = Value of a fixed future transaction in FC_i * S_t

Example: Swiss Cruises.

Sold cruise packages for USD 2.5 million. Payment: 30 days. Bought fuel oil for USD 1.5 million. Payment: 30 days. $S_t = 1.0282 \text{ CHF/USD}$. Thus, the net transaction exposure in USD 30 days is: Net $TE_{j=USD} = (\text{USD } 2.5\text{M} - \text{USD } 1.5\text{M}) * 1.0282 \text{ CHF/USD}$ = USD 1M * 1.0282 CHF/USD = CHF 1.0282M.

Netting

An MNC has many transactions, in different currencies, with fixed futures dates. Since TE is denominated in DC, all exposures are easy to consolidate in one single number: Net TE (NTE).

NTE = Net
$$TE_t = \sum_{j=1}^{J} TE_{j,t}$$
 j = EUR, GBP, JPY, BRL, MXN,...

• NTE is reported by fixed date: up to 90 days, more than 90-days, etc.

<u>Note</u>: Since currencies are correlated, firms take into account **correlations** to calculate how changes in S_t affect Net TE \Rightarrow **Portfolio Approach**.

Example: A U.S. MNC:	Subsidiary A with $CF(in EUR) > 0$
	Subsidiary B with CF(in GBP) < 0
Since $\rho_{GBP,EUR}$ is very high and	l positive, NTE may be very low. ¶
\Rightarrow Hedging decisions are usua	lly made based on exposure of the portfolio .

• Netting - Correlations Example: Swiss Cruises. Net Inflows (in USD): USD 1 million. Due: 30 days. Loan repayment: CAD 1.40 million. Due: 30 days. $S_t = 1.3692 \text{ CAD/USD.}$ $\rho_{CAD,USD} = .843$ (monthly from 1971 to 2017) Swiss Cruises considers NTE to be close to zero. ¶ <u>Note 1</u>: Correlations vary a lot across currencies. In general, regional currencies are highly correlated. From 2000-2017, $\rho_{GBP,NOK} = 0.58$ $\rho_{GBP,JPY} = 0.04$ <u>Note 2</u>: Correlations also vary over time.

• Q: How does TE affect a firm in the future?

Firms are interested in how TE will change in the future, say, in T days when transaction will be settled.

- Firms do not know S_{t+T} , they need to forecast $S_{t+T} \implies E_t[S_{t+T}]$
- Once we forecast $E_t[S_{t+T}]$, we can forecast $E_t[TE_{t+T}]$: $E_t[TE_{t+T}] =$ **Value of a fixed future transaction in FC** * $E_t[S_{t+T}]$
- $E_t[S_{t+T}]$ has an associated standard error, which can be used to create a range (or interval) for S_{t+T} & TE.

- Risk management perspective:

How much DC can the firm spend on account of a FC inflow in T days? How much DC will be needed to cover a FC outflow in T days?

Range Estimates of TE

• S_t is very difficult to forecast. Thus, a range estimate for NTE provides a useful number for risk managers.

The smaller the range, the lower the sensitivity of NTE.

• Three popular methods for estimating a range for NTE:

(1) Ad-hoc rule (say, $\pm 10\%$)

(2) Sensitivity Analysis (or simulating exchange rates)

(3) Assuming a statistical distribution for exchange rates.

• Ad-hoc Rule

Many firms use an *ad-boc* ("arbitrary") rule to get a range: $\pm X\%$ (for example, a 10% rule)

Simple and easy to understand: Get TE and add/subtract $\pm X\%$.

Example: 10% Rule.

SC has a Net TE = CHF 1.0282M due in 30 days

 \Rightarrow if S_t changes by \pm **10%**, NTE changes by \pm **CHF 102,820**.

Note: This example gives a range for NTE:

NTE ∈ [CHF 0.92538 M; CHF 1.13102 M]

<u>Risk Management Interpretation</u>: A risk manager will only care about the lower bound. If SC is counting on the **USD 1M** inflow to pay CHF expenses, these expenses should not exceed **CHF .9254 M**. ¶

• Sensitivity Analysis

<u>Goal</u>: Measure the sensitivity of TE to different exchange rates. Examples: Sensitivity of TE to extreme forecasts of S_t .

Sensitivity of TE to randomly simulate thousands of S_r.

Data: 45-years of monthly CHF/USD percentage changes

1-mo Changes ir	1 CHF/USD	
Mean	-0.002052	$\mu_{\rm m} = -0.2052\%$
Standard Error	0.0015034	
Median	-0.003271	
Mode	#N/A	
Standard Deviation	0.03470942	$\sigma_{\rm m} = 3.47\%$
Sample Variance	0.0012047	
Kurtosis	0.4632713	
Skewness	0.4298708	
Range	0.283689	
Minimum	-0.131765	
Maximum	0.150924	
Sum	0.0576765	
Count	533	

Example: Sensitivity analysis of Swiss Cruises Net TE (CHF/USD) Empirical distribution (ED) of S_t monthly changes over the past 45 years. Extremes: **15.09%** (on October 2011) and **-13.18%** (on March 1973).

(A) Best case scenario. Net TE: USD 1M * **1.0282 CHF/USD** * (1 + **0.1509**) = **CHF 1,183,355**.

(B) Worst case scenario. Net TE: USD 1M * 1.0282 CHF/USD * (1 – 0.1318) = CHF 896,400.

<u>Note</u>: If Swiss Cruises is counting on the USD 1M to cover CHF expenses, from a risk management perspective, the expenses to cover should not exceed **CHF 896,400**. ¶

Example (continuation): In excel, using Vlookup function (i) Randomly draw $\mathbf{e}_{f,t} = \mathbf{e}_{f,sim,1}$ from ED: Observation 519: $\mathbf{e}_{f,t+30} = 0.0034$ (ii) Calculate $\mathbf{S}_{sim,1}$: $\mathbf{S}_{t+30} = 1.0282$ CHF/USD * (1 + .0034) = 1.0317(iii) Calculate $\mathbf{TE}_{sim,1}$: $\mathbf{TE} = \mathbf{USD}$ 1M * $\mathbf{S}_{t+30} = 1,031,701.25$ (iv) Repeat (i)-(iii) 1,000 times. Plot histogram. Construct a $(1-\alpha)$ % C.I.

		Random Draw	Draw $e_{f,sim}$		
Lookup					
cell	$e_{f,t}$	with Randbetween	with Vlookup	S_sim	TE(sim)
1					
2	0.0025	519	0.0034	1.0317	1,031,701.25
3	-0.0027	147	-0.0104	1.0175	1,017,489.58
4	0.0001	99	0.0125	1.0411	1,041,098.57
5	-0.0443	203	-0.0584	0.9681	968,119.73
6	-0.0017	482	-0.0727	0.9535	953,458.55
7	-0.0031	4	0.0001	1.0283	1,028,319.69
8	-0.0227	67	-0.0226	1.0050	1,004,954.33
9	-0.0099	136	0.0095	1.0380	1,038,012.59
10	0.0098	232	0.0191	1.0479	1,047,877.24

Based on this simulated distribution, we can estimate a 95% range (leaving 2.5% observations to the left and 2.5% observations to the right)

⇒ NTE ∈ [CHF 0.949652 M; CHF 1.090783 M]

<u>Practical Application</u>: If SC expects to cover expenses with this USD inflow, the maximum amount in CHF to cover, using this 95% CI, should be **CHF 949,652**.

• Aside: How many draws in the simulations? Usually, we draw until the histograms –i.e., CIs– do not change a lot.

Example: 1,000 and 10,000 draws For the SC example, we drew 1,000 scenarios to get a 95% C.I.: ⇒ NTE ∈ [CHF 0.949652 M; CHF 1.090783 M]).

Now, we draw 10,000 scenarios and determined the following 95% C.I.: $\Rightarrow \text{NTE} \in [\text{CHF 0.952202 M; CHF 1.093762 M}]$

• Assuming a Distribution A range based on an assumed distribution provide a range for TE. For example, a firm assumes that $e_{f,t} \sim N(\mu, \sigma^2)$. (``~`` = follows)Recall that based on a distribution, we can build a confidence interval (CI). For the normal distribution we have: \Rightarrow a (1 - α)% CI: $[\mu \pm \mathbf{z}_{\alpha/2} \sigma]$ where $\mu = \text{Estimated mean}$ σ^2 = Estimated variance <u>Note</u>: To be precise, since the normal distribution is symmetric $|\mathbf{z}_{1-\alpha/2}| =$ $|\mathbf{z}_{\alpha/2}|$. We just use the absolute value for the \mathbf{z}_{α} . \Rightarrow z_{.025} = 1.96 (\approx 2) Usual α 's: $\alpha = .05$ \Rightarrow z_{.01} = 2.33 $\alpha = .02$ Interpretation: If α = .05, the probability is about .95 that the 95% confidence interval will include the true population parameter.

Assuming a Distribution
Below, we plot two different (1 - α)% Confidence Intervals for two different SD (σ = 1 & 2), where α = 5%: 95% Confidence Interval: [μ ± 1.96 σ].

Bigger SD, wider CI. We associate a wider CI with more uncertainty.

Example: CI range based on a Normal distribution. Assume Swiss Cruises believes that CHF/USD monthly changes follow a normal distribution. Swiss Cruises estimates the mean and the variance. $\mu = Monthly mean = -0.002$ $\sigma^2 = Monthly variance = 0.03471^2 = 0.0012947 \implies \sigma = 0.03471$ (3.47%) $e_{f,t} \sim N(0, 0.0012947)$. $e_{f,t} = CHF/USD$ monthly changes. Swiss Cruises constructs a 95% CI for CHF/USD monthly changes. Recall that a 95% confidence interval is given by $[\mu \pm 1.96 \sigma]$. Thus, $e_{f,t} \in [-0.002 \pm 1.96 \ 0.03471] = [-0.070, 0.066]$ (with 95% confidence) Based on this range for $e_{f,t}$, we derive bounds for the net TE: (A) Lower bound Net TE: USD 1M * 1.0282 CHF/USD * $(1 - 0.070) = CHF \ 956,226$. (B) Upper bound Net TE: USD 1M * 1.0282 CHF/USD * $(1 + 0.066) = CHF \ 1,096,061$. ⇒ TE ∈ [CHF 956,226; CHF 1,096,601]

• The lower bound, for a receivable, represents the worst case scenario within the confidence interval.

There is a *Value-at-Risk* (VaR) interpretation:

VaR: Maximum expected loss in a given time interval within a (one-sided) confidence interval.

Going back to previous example: **CHF 956,226** is the minimum revenue to be received by Swiss Cruises in the next 30 days, within a 97.5% CI.

The VaR is usually expressed as an expected loss, in this case, the loss relative to today's valuation of receivable (TE). We will call this VaR(mean):

```
VaR(mean, 97.5%) = CHF 1.0282M - CHF 956,226 = CHF 71,974
```

Interpretation: With 97.5% confidence, the maximum expected loss of value (in CHF) of today's Swiss Cruises USD 1M receivable is CHF 71,974.

• Summary NTE for Swiss francs:				
- NTE = CH I	F 1.0282 M			
- NTE Range: - Ad-hoc:	NTE e [CHF 0.92538 M; CHF 1.13102 M]			
- Simulation: - Extremes: - Simulation:	NTE ∈ [CHF 896,400; CHF 1,183,355]. NTE ∈ [CHF 949,652 M; CHF 1,090,783 M]			
- Statistical Di	stribution (normal): ΝΤΕ ε [CHF 956,226; CHF 1,096,601]			

• Approximating returns to create CIs for different T.

In general, we use *arithmetic returns*: $e_{f,t} = S_t/S_{t-1} - 1$. Changing the frequency is not straightforward.

But, if we use *logarithmic returns* –i.e., $e_{f,t} = \log(S_t) - \log(S_{t-1})$ –, changing the frequency of the mean return (μ) and return variance (σ^2) is simple. Let μ and σ^2 be measured in a given base frequency. Then,

$$\mu_{\rm f} = \mu \,\mathrm{T},$$
$$\sigma_{\rm f}^2 = \sigma^2 \,\mathrm{T},$$

Example: From Table for CHF/USD: $\mu_m = -0.002052$ and $\sigma_m = 0.03471$. (These are arithmetic returns.) We want to calculate the daily and annual percentage mean change and standard deviation for S_t.

We will approximate them using the logarithmic rule.

(1) Daily (i.e., f=d=daily and T=1/30) $\mu_d = (-0.002052) * (1/30) = -.000375$ (0.038%) $\sigma_d = (0.03471) * (1/30)^{1/2} = .00634$ (0.63%)

♦ Approximating returns to create CIs for different T.
 (2) Annual (i.e., f=a=annual and T=12)
 μ_a = (-0.002052) * (12) = -0.024624 (-2.46%)
 σ_a = (0.03471) * (12)^{1/2} = .12024 (12.02%)

The annual compounded arithmetic return is $.004817 = (1+.0004005)^{12}-1$. When the arithmetic returns are low, these approximations work well. ¶

<u>Note I</u>: Using these annualized numbers, we can approximate an annualized VaR(97.5), if needed:

USD 1M * 1.0282 CHF/USD * [1 + (-0.024624 – 1.96 * 0.12024)] = = CHF 760,5653. ¶

<u>Note II</u>: Using logarithmic returns rules, we can approximate USD/CHF monthly changes by changing the sign of the CHF/USD. The variance remains the same. Then, annual USD/CHF mean percentage change is approximately 2.46%, with an 12.02% annualized volatility.

 Sensitivity Analysis for portfolio approach Do a simulation: assume different scenarios -- attention to correlations! **Example:** IBM has the following CFs in the next 90 days **Outflows Net Inflows** FC Inflows S, GBP 100,000 25,000 **1.60 USD/GBP** (75,000)EUR 80,000 200,000 120,000 **1.05 USD/EUR** NTE (USD) = EUR 120,000 * 1.05 USD/EUR + (GBP 75,000) * 1.60 USD/GBP = USD 6,000 (this is our baseline case) We are going to consider two extreme situations for the EUR & GBP: - Situation 1: Perfect positive correlation, $\rho_{GBPEUR} = 1$. - Situation 2: Perfect negative correlation, $\rho_{GBPEUR} = -1$. We use these extreme situations to illustrate the benefits/costs of having currency positions that co-move.

Example (continuation): Situation 1: Assume $\rho_{GBP,EUR} = 1$. (EUR and GBP correlation is high.) <u>Scenario (i)</u>: EUR appreciates by 10% against the USD ($e_{f,EUR,t} = 0.10$). $S_t = 1.05 \text{ USD/EUR} * (1 + 0.10) = 1.155 \text{ USD/EUR}$ Since $\rho_{GBP,EUR} = 1 \Rightarrow S_t = 1.60 \text{ USD/GBP} * (1 + 0.10) = 1.76 \text{ USD/GBP}$ NTE (USD) = EUR 120,000 * 1.115 USD/EUR + (GBP 75,000) * 1.76 USD/GBP = USD 6,600 \Rightarrow This new NTE represents a 10% change with respect to baseline case. Example (continuation):Scenario (ii): EUR depreciates by 10% against the USD ($e_{f,EUR,t} = -0.10$). $S_t = 1.05 \text{ USD/EUR} * (1 - 0.10) = 0.945 \text{ USD/EUR}$ Since $\rho_{GBP,EUR} = 1 \Rightarrow S_t = 1.60 \text{ USD/GBP} * (1 - 0.10) = 1.44 \text{ USD/GBP}$ NTE (USD) = EUR 120,000 * 0.945 USD/EUR+ (GBP 75,000) * 1.44 USD/GBP= USD 5,400 \Rightarrow This new NTE represents a -10% change with respect to baseline case.Now, we can specify a range for NTE \Rightarrow NTE \in [USD 5,400, USD 6,600]

<u>Note</u>: The NTE change is exactly the same as the change in S_t . If a firm has matching inflows and outflows in highly positively correlated currencies –i.e., the NTE is equal or close to zero-, then changes in S_t do not affect NTE. That's very good.

Example (continuation): Situation 2: Suppose the $\rho_{GBPEUR} = -1$ (NOT a realistic assumption!) <u>Scenario (i)</u>: EUR appreciates by 10% against the USD ($e_{f,EUR,t} = 0.10$). $S_t = 1.05 \text{ USD/EUR} * (1 + 0.10) = 1.155 \text{ USD/EUR}$ Since $\rho_{GBPEUR} = -1 \Rightarrow S_t = 1.60 \text{ USD/GBP} * (1 - 0.10) = 1.44 \text{ USD/GBP}$ NTE (USD) = EUR 120,000 * 1.155 USD/EUR + (GBP 75,000) * 1.44 USD/GBP = USD 30,600. (410% \uparrow) <u>Scenario (ii)</u>: EUR depreciates by 10% against the USD ($e_{f,EUR,t} = -0.10$). $S_t = 1.05 \text{ USD/EUR} * (1 - 0.10) = 0.945 \text{ USD/EUR}$ Since $\rho_{GBPEUR} = -1 \Rightarrow S_t = 1.60 \text{ USD/GBP} * (1+.10) = 1.76 \text{ USD/GBP}$ NTE (USD) = EUR 120,000 * 0.945 USD/EUR Since $\rho_{GBPEUR} = -1 \Rightarrow S_t = 1.60 \text{ USD/GBP} = -\text{USD 18,600. (-410% \downarrow)}$ Now, we can specify a range for NTE $\Rightarrow \text{NTE} \in [(\text{USD 18,600}, \text{ USD 30,600}]$

Example (continuation):

<u>Note</u>: The NTE has ballooned. A 10% change in exchange rates produces a dramatic increase in the NTE range.

 \Rightarrow Having non-matching exposures in different currencies with negative correlation is very dangerous.

IBM will assume a correlation from the data and, then, jointly draw –i.e., draw together a pair, $e_{f,EUR,t} \& e_{f,GBP,t}$ – many scenarios for S_t to generate an empirical distribution for the NTE.

From this ED, IBM will get a range -- and a VaR- for the NTE.